Self-organized flows in phase-synchronizing active fluids

Abstract

Many active biological particles, such as swimming microorganisms or motor-proteins, do work on their environment by going though a periodic sequence of shapes. Interactions between particles can lead to the phase-synchronization of their duty cycles. Here we consider collective dynamics in a suspension of such active particles coupled through hydrodynamics. We demonstrate that the emergent non-equilibrium states feature stationary patterned flows and robust unidirectional pumping states under confinement. Moreover the phase-synchronized state of the suspension exhibits spatially robust chimera patterns in which synchronized and phase-isotropic regions coexist within the same system. These findings demonstrate a new route to pattern formation and could guide the design of new active materials.

Publication
PRL
Sebastian Fürthauer
Sebastian Fürthauer
Principal Investigator, WWTF VRG Young Investigator

Researching the Physics of life.